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Background: Experimental studies demonstrate that higher intake of omega-3 fatty acids (n−3 FA) improves in-
sulin sensitivity, however, we reported that n−3 FA 2 g therapy, most commonly used dosage did not signifi-
cantly improve insulin sensitivity despite reducing triglycerides by 21% in patients. Therefore, we investigated
the effects of different dosages of n−3 FA in patients with hypertriglyceridemia.
Methods: This was a randomized, single-blind, placebo-controlled, parallel study. Age, sex, and body mass index
were matched among groups. All patients were recommended to maintain a low fat diet. Forty-four patients
(about 18 had metabolic syndrome/type 2 diabetes mellitus) in each group were given placebo, n−3 FA 1
(O1), 2 (O2), or 4 g (O4), respectively daily for 2 months.
Results: n−3 FA therapy dose-dependently and significantly decreased triglycerides and triglycerides/HDL cho-
lesterol and improved flow-mediated dilation, compared with placebo (by ANOVA). However, each n−3 FA

therapy did not significantly decrease high-sensitivity C-reactive protein and fibrinogen, comparedwith placebo.
O1 significantly increased insulin levels and decreased insulin sensitivity (determined by QUICKI) and O2 signif-
icantly decreased plasma adiponectin levels relative to baseline measurements. Of note, when compared with
placebo, each n−3 FA therapy did not significantly change insulin, glucose, adiponectin, glycated hemoglobin
levels and insulin sensitivity (by ANOVA). We observed similar results in a subgroup of patients with the meta-
bolic syndrome.
Conclusions: n−3 FA therapy dose-dependently and significantly decreased triglycerides and improved flow-
mediated dilation. Nonetheless, n−3 FA therapy did not significantly improve acute-phase reactants and insulin
sensitivity in patients with hypertriglyceridemia, regardless of dosages.
© 2014 Published by Elsevier Ireland Ltd.
1. Introduction

Epidemiological and clinical evidences suggest a significant inverse
association between long-term intake of omega-3 fatty acids, especially
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and
mortality associatedwith coronary artery disease [1–3]. Thus, consump-
tion of fish or fish-oil may help prevent adverse consequences of
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coronary artery disease, especially fatal myocardial infarction and sud-
den cardiac death. Consumption of omega-3 fatty acids causes improve-
ment in many relevant cardiovascular biomarkers including those
represented by hypertriglyceridemia [4], vascular dysfunction [5,6],
and inflammation [6]. However, recently, the reported beneficial effects
of omega-3 fatty acids remain debated. Indeed, a recent meta-analysis
stated that omega-3 fatty acids may protect against vascular disease,
but the evidence is not clear-cut, and any benefits are certainly not as
great as previously believed [7].

Endothelial dysfunction associated with metabolic syndrome and
other insulin resistant states is characterized by impaired nitric oxide
(NO) bioavailability and release from endothelium [8–10]. This reduces
endently and significantly decreased triglycerides and improved flow-
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Table 1
Baseline characteristics of the study population.

Placebo
(n = 42)

Omacor
1 g (O1) (n = 44)

Omacor
2 g (O2)
(n = 43)

Omacor
4 g (O4)
(n = 44)

Risk factors, n (%)
Current Smoking 6 (14) 7 (16) 7 (16) 8 (18)
Metabolic Syndrome 15 (36) 16 (36) 14 (33) 16 (36)
Diabetes 2 (5) 3 (7) 3 (7) 2 (5)

Medications, n (%)
β-Adrenergic blockers 10 (24) 13 (30) 11 (26) 12 (27)
Calcium channel blockers 7 (17) 7 (16) 8 (19) 8 (18)
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blood flow and impairs delivery of substrates and hormones to meta-
bolic target tissues. Thus, improvement in endothelial function is
predicted to increase sensitivity to metabolic actions of insulin and im-
provement in insulin resistance. This may be one mechanism by which
omega-3 fatty acids decrease the incidence of coronary heart disease.
Adiponectin is one of adipokines secreted specifically by adipose cells
[11]. In humans, plasma levels of adiponectin are negatively correlated
with adiposity and insulin resistance [11] and low levels of adiponectin
are a strong and consistent predictor of the onset and prevalence of type
2 diabetes [12].

Omega-3 fatty acids are used to treat patients with hypertriglyc-
eridemia. Experimental studies demonstrate that higher intake of
omega-3 fatty acids improves insulin sensitivity [13,14], however, ob-
servational studies report that omega-3 fatty acids are associated with
modestly higher incidence of type 2 diabetes [15,16]. We reported
that omega-3 fatty acid 2 g therapy, most commonly used dosage did
not significantly improve insulin sensitivity despite reducing triglycer-
ides by 21% in patients [17]. Therefore, we investigated the vascular
and metabolic effects of different dosages of omega-3 fatty acids in pa-
tients with hypertriglyceridemia.

2. Methods

2.1. Study population and design

Weused a randomized, single-blind, placebo-controlled, parallel study design. Alloca-
tion concealment was achieved by using envelopes with the collaboration of a statistician
to ensure that investigators were blinded to interventions. Age, gender, and body mass
indexwerematched among all subjects.We recruited patients froma primary care setting
in the Vascular Medicine and Atherosclerosis Unit, Cardiology, Gil Medical Center, Gachon
University. We excluded patients with moderate or severe hypertension, uncontrolled
diabetes (HbA1c N 9%), nephrotic syndrome, hypothyroidism, coronary artery disease, or
peripheral vascular disease. No patient had taken any cholesterol-lowering agent, hor-
mone replacement therapy, or antioxidant vitamin supplements during the 2 months pre-
ceding study enrollment. Before and during the study period, a dietitian educated patients
tomaintain a low fat diet. Activity levels of the subjects were notmonitored before or dur-
ing the study.We randomly administered placebo, omega-3 fatty acid 1, 2, or 4 g to 44 pa-
tients with primary hypertriglyceridemia (N150 mg/dl), respectively once daily during a
2 month treatment period. Two patients on placebo and one patient on omega-3 fatty
acid 2 g withdrew from the study because they moved to other places and dropped out
from the study (Fig. 1). A research nurse counted pills at the end of treatment to monitor
compliance. Thus, 42 patients on placebo, 44 patients on omega-3 fatty acid 1 g, 43 pa-
tients on omega-3 fatty acid 2 g and 44 patients on omega-3 fatty acid 4 g, respectively,
finished the study. Baseline characteristics are in Table 1. About 16 patients among each
group had metabolic syndrome according to the definition of National Cholesterol
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Education Program Adult Treatment Panel III [18]. Some patients were taking beta adren-
ergic blockers and/or calcium channel blockers to control blood pressure. No additional
medications including aspirin or non-steroidal anti-inflammatory drugs were allowed
during the study period to avoid confounding effects of other drugs. Calcium channel or
beta adrenergic blockers were withheld for ≥48 h before the study. This study was
approved by the Gil Hospital Institutional Review Board and all participants gave written,
informed consent.

2.2. Laboratory assays and vascular studies

Blood samples for laboratory assayswere obtained at approximately 8:00 a.m. follow-
ing overnight fasting before and at the end of each 2-month treatment period. These sam-
ples were immediately coded so that investigators performing laboratory assays were
blinded to subject identity or study sequence.

Assays for lipids, glucose, and plasma adiponectin were performed in duplicate
by ELISA (R & D Systems, Inc., Minneapolis, Minnesota), assays for high sensitivity
C-reactive protein (CRP) levels by latex agglutination (CRP-Latex(II)®, Denka-Seiken,
Tokyo, Japan) and assays for plasma insulin levels by immunoradiometric assay
(INSULIN-RIABEAD® II, SRL, Inc., Tokyo, Japan) and assays for ambient glycemia, glycated
hemoglobin (HbA1c) by high performance liquid chromatography assay (VARIANT II
TURBO®, BIO-RAD, Inc., Hercules, California) as previously described [17,19–24]. The
interassay and intraassay coefficients of variation for plasma adiponectinwere b6%. Quan-
titative Insulin-Sensitivity Check Index (QUICKI), a surrogate index of insulin sensitivity
based on fasting glucose and insulin levels, was calculated as follows (insulin is expressed
in µU/ml and glucose inmg/dl): QUICKI= 1 / [log(insulin)+ log(glucose)] [25]. Imaging
studies of the right brachial arterywere performed using an ATL HDI 3000 ultrasoundma-
chine (ATL Philips, Bothell, WA, USA) equipped with a 10 MHz linear-array transducer,
based on a previously published technique [17,19,20,22–24].

2.3. Statistical analysis

Data are expressed asmean±SDormedian (range: 25%–75%).We used SigmaPlot 11
(SYSTAT SOFTWARE, Inc.). After testing data for normality, we used Student's paired t or
Wilcoxon Signed Rank test to compare values between baseline and treatment at
ent randomization
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2 months, as reported in Tables 2 and3.We used oneway analysis of variance (ANOVA) or
Kruskal–Wallis ANOVA on Ranks to compare baseline or treatment effects among
treatment groups. Post-hoc comparisons between different treatment pairs were made
using the Student–Newman–Keuls multiple comparison procedures or Dunn's method.
Pearson or Spearman correlation coefficient analysis was used to assess associations be-
tweenmeasured parameters, as reported in Tables 2 and 3.We calculated that 38 subjects
would provide 80% power for detecting an absolute increase of 1.6% or greater in flow-
mediated dilation of the brachial artery between baseline and omega-3 fatty acid 2 g,
with α = 0.05 based on our previous studies [17]. The comparison of endothelium-
dependent dilation was prospectively designated as the primary end-point of the study.
All other comparisons were considered secondary. P b 0.05 was considered to represent
statistical significance.
3. Results

There were no significant differences between groups for any of the
baseline measurements (Tables 2 and 3).
3.1. Effects on lipids

Placebo treatment significantly reduced triglycerides (TG) and
TG/high-density lipoprotein (HDL) cholesterol ratio from baseline.
Omega-3 fatty acid treatment dose-dependently and significantly
reduced TG and TG/HDL cholesterol ratio from baseline. Effects of
omega-3 fatty acids on TG levels were significant when compared
with placebo treatment (P b 0.05 by ANOVA; Fig. 2). Omega-3 fatty
acid 2 g and 4 g treatment significantly reduced apolipoprotein AI and
non-HDL cholesterol from baseline, respectively. However, omega-3
fatty acid treatment did not significantly change other lipoproteins in-
cluding total cholesterol, non-HDL cholesterol and HDL cholesterol
from baseline. Effects of omega-3 fatty acids on these were not signifi-
cant when compared with placebo treatment.
Table 2
Effects of placebo or Omacor on lipids and endocrine parameters in patients with hypertriglyc

Placebo (n = 42) Omacor 1 g (O1) (n = 44)

Baseline Treatment Baseline Treatment

Age 54 ± 9 55 ± 9
Sex (M:F) 23:19 22:22
BMI 26.50 ± 2.72 26.45 ± 2.71 26.32 ± 3.20 26.35 ± 3.20
Lipids (mg/dl)

Total cholesterol 201 ± 29 196 ± 31 197 ± 29 193 ± 32
Triglycerides 281 ± 63 247 ± 102⁎ 286 ± 73 229 ± 99⁎

LDL cholesterol 111 ± 34 109 ± 34 109 ± 32 110 ± 33
Apo B 107 ± 20 107 ± 23 105 ± 19 103 ± 19
HDL cholesterol 42 ± 8 43 ± 7 41 ± 8 43 ± 9
Apo A-I 131 ± 15 133 ± 17 128 ± 16 130 ± 17
TG/HDL ratio 7.0 ± 2.4 5.9 ± 2.9⁎ 7.3 ± 2.6 5.6 ± 2.8‡

Non-HDL 159 ± 27 153 ± 29 157 ± 27 150 ± 31
Vasomotor

FMD (%) 5.98 ± 1.42 6.31 ± 1.56‡ 6.04 ± 1.52 7.61 ± 1.68‡

NTG (%) 16.23 ± 3.19 16.59 ± 3.26 16.25 ± 3.34 16.61 ± 4.14
Inflammation

hsCRP (mg/l) 1.15
(0.50–1.75)

0.95
(0.48–1.93)

1.05
(0.43–1.68)

0.65
(0.33–1.38)

Fibrinogen (mg/dl) 355 ± 69 348 ± 83 353 ± 65 348 ± 62
Insulin resistance

ADP (μg/ml) 2.6 (1.9–3.8) 2.7 (1.9–4.1) 2.9 (1.5–4.2) 2.3 (1.7–4.1)
Insulin (μU/ml) 7.4 (5.5–13.7) 9.3 (5.8–13.5) 7.3 (5.1–11.1) 9.7 (5.9–13.8
Glucose (mg/dl) 101 ± 15 101 ± 13 98 ± 15 99 ± 14
QUICKI 0.35 ± 0.03 0.34 ± 0.04 0.35 ± 0.03 0.34 ± 0.03⁎

HbA1c (%) 5.97 ± 0.65 5.94 ± 0.63 5.93 ± 0.62 5.97 ± 0.55

Data are expressed as means ± SD or median.
There were no significant differences among each baseline value.
⁎P b 0.05, +P b 0.01, ‡P b 0.001 for comparison with each baseline value.
†P b 0.05 for comparison with the value after therapy with placebo.
Global ANOVA indicates group differences.
FMD = flow-mediated dilation, NTG = nitroglycerin-induced dilation, HbA1c = glycated hem
Quantitative Insulin-Sensitivity Check Index (QUICKI) = 1 / [log (insulin) + log (glucose)] [2
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3.2. Effects on vasomotor function, high sensitivity C-reactive protein,
and fibrinogen

Placebo treatment significantly improved flow-mediated dilator
response to hyperemia (FMD) relative to baseline measurements.
Omega-3 fatty acid treatment dose-dependently and significantly im-
proved FMD after 2 months of therapy when compared with baseline
(P b 0.001 by paired t-test) or when compared with placebo treatment
(P b 0.001 by ANOVA; Fig. 2). Brachial artery dilator responses to nitro-
glycerin were not significantly different between any of the therapies.
Placebo and omega-3 fatty acid treatment did not significantly change
high sensitivity CRP and fibrinogen levels relative to baseline measure-
ments except omega-3 fatty acid 4 g increasing fibrinogen levels.

3.3. Effects on adiponectin, glycated hemoglobin, and insulin resistance

Placebo and omega-3 fatty acid treatment did not significantly
change insulin or glucose levels from baseline except omega-3 fatty
acid 1 g increasing insulin levels. However, the effects of omega-3
fatty acid treatment on fasting insulin and glucose levels were not sig-
nificant when compared with placebo treatment (Fig. 3). We observed
significant inverse correlations between baseline adiponectin and base-
line insulin levels (r = −0.338, P = 0.028 before placebo) and signifi-
cant correlations between baseline adiponectin levels and baseline
QUICKI (r = 0.451, P = 0.003 before placebo; r = 0.314, P = 0.038
before omega-3 fatty acid 1 g).

Placebo and omega-3 fatty acids did not significantly change plasma
adiponectin levels, insulin sensitivity (determined by QUICKI), or HbA1c

levels relative to baseline measurements except omega-3 fatty acid 2 g
decreasing adiponectin levels and 1 g decreasing insulin sensitivity.
However, the effects of omega-3 fatty acid treatment on these were
not significant when compared with placebo treatment (Fig. 4).
eridemia.

Omacor 2 g (O2) (n = 43) Omacor 4 g (O4) (n = 44) Global
ANOVA

Baseline Treatment Baseline Treatment

54 ± 9 55 ± 8 0.944
23:20 23:21
26.51 ± 2.63 26.43 ± 2.61 26.18 ± 3.21 26.09 ± 3.19 0.959

195 ± 31 194 ± 31 198 ± 30 188 ± 32 0.403
267 ± 118 203 ± 106+ 287 ± 73 191 ± 117‡† 0.021
109 ± 33 113 ± 32 110 ± 33 109 ± 33 0.743
107 ± 22 108 ± 20 107 ± 21 103 ± 18 0.358
43 ± 7 42 ± 8 40 ± 7 40 ± 8 0.050
132 ± 17 126 ± 14⁎ 128 ± 17 125 ± 17 0.096
6.4 ± 2.9 5.2 ± 3.1‡ 7.3 ± 2.4 5.0 ± 3.2‡ 0.152
153 ± 29 153 ± 29 157 ± 28 148 ± 29⁎ 0.263

† 5.82 ± 1.54 7.64 ± 1.74‡† 6.03 ± 1.39 8.37 ± 1.51‡† b0.001
16.44 ± 3.18 16.78 ± 3.83 16.05 ± 2.96 16.45 ± 4.11 0.989

1.00
(0.50–2.10)

0.80
(0.40–1.70)

1.05
(0.53–1.70)

0.85
(0.60–1.68)

0.401

354 ± 80 359 ± 70 349 ± 61 370 ± 60⁎ 0.070

2.6 (1.8–4.5) 2.3 (1.7–4.3)⁎ 2.6 (1.5–3.6) 2.2 (1.6–3.5) 0.375
)⁎ 10.1 (6.4–12.8) 7.8 (6.0–12.0) 7.3 (4.2–10.2) 8.5 (5.6–11.1) 0.068

102 ± 18 99 ± 12 96 ± 15 98 ± 11 0.397
0.34 ± 0.03 0.35 ± 0.03 0.36 ± 0.03 0.35 ± 0.03 0.222
5.94 ± 0.63 5.98 ± 0.61 5.95 ± 0.33 6.01 ± 0.51 0.389

oglobin, ADP = adiponectin.
5].

endently and significantly decreased triglycerides and improved flow-
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Table 3
Effects of placebo or Omacor on lipids and endocrine parameters in patients with hypertriglyceridemia and metabolic syndrome/type 2 diabetes.

Placebo (n = 17) Omacor 1 g (O1) (n = 19) Omacor 2 g (O2) (n = 17) Omacor 4 g (O4) (n = 18) Global
ANOVA

Baseline Treatment Baseline Treatment Baseline Treatment Baseline Treatment

Age 53 ± 6 54 ± 10 55 ± 8 54 ± 9 0.877
Sex (M:F) 9:8 9:10 8:9 8:10
BMI 26.41 ± 2.68 26.42 ± 2.72 26.12 ± 3.05 26.06 ± 2.98 25.89 ± 2.40 25.82 ± 2.44 26.18 ± 2.99 26.06 ± 2.90 0.627
Lipids (mg/dl)

Total cholesterol 206 ± 37 200 ± 38 193 ± 28 190 ± 36 192 ± 38 196 ± 33 194 ± 28 186 ± 32 0.432
Triglycerides 268 ± 66 243 ± 104 274 ± 70 227 ± 82⁎ 231 ± 119 182 ± 135⁎ 276 ± 56 175 ± 80‡ 0.055
LDL cholesterol 110 ± 42 107 ± 42 105 ± 30 108 ± 35 111 ± 39 114 ± 39 112 ± 33 113 ± 31 0.904
Apo B 106 ± 23 110 ± 29 105 ± 23 101 ± 23 107 ± 29 107 ± 17 107 ± 22 105 ± 21 0.576
HDL cholesterol 42 ± 7 43 ± 8 42 ± 9 44 ± 10 43 ± 8 42 ± 8 40 ± 9 40 ± 8 0.445
Apo A-I 136 ± 15 135 ± 18 129 ± 17 134 ± 18 130 ± 13 126 ± 11 127 ± 20 123 ± 18 0.204
TG/HDL ratio 6.7 ± 2.6 5.9 ± 3.1 6.8 ± 2.1 5.4 ± 2.5⁎ 5.5 ± 3.1 4.3 ± 2.8+ 7.1 ± 2.0 4.5 ± 2.1‡ 0.220
Non-HDL 164 ± 36 157 ± 35 152 ± 27 146 ± 35 149 ± 36 154 ± 29 154 ± 27 146 ± 28 0.222

Vasomotor
FMD (%) 6.03 ± 1.60 6.37 ± 1.81+ 5.76 ± 1.30 7.31 ± 1.30‡† 5.62 ± 1.72 7.39 ± 1.98‡† 5.68 ± 1.11 8.32 ± 1.25‡† b0.001
NTG (%) 16.16 ± 3.37 16.35 ± 3.43 15.94 ± 3.32 15.97 ± 4.18 15.98 ± 3.36 15.94 ± 4.40 16.31 ± 3.39 17.25 ± 4.55 0.323

Inflammation
hsCRP (mg/l) 0.90

(0.30–1.75)
0.70
(0.40–1.25)

1.00
(0.40–1.70)

0.50
(0.30–1.00)

1.10
(0.80–2.30)

1.00
(0.45–2.55)

1.15
(0.60–1.75)

0.85
(0.70–1.43)

0.668

Fibrinogen (mg/dl) 336 ± 68 331 ± 72 343 ± 69 331 ± 49 357 ± 77 366 ± 64 361 ± 56 391 ± 60 0.179
Insulin resistance

ADP (μg/ml) 3.0 (2.0–4.1) 2.9 (1.8–3.9) 2.1 (1.3–4.0) 2.2 (1.6–3.7) 3.4 (1.4–4.5) 3.1 (1.7–4.2) 2.5 (1.4–3.7) 2.3 (1.6–3.6) 0.656
Insulin (μU/ml) 10.1 (5.5–15.3) 8.6 (5.2–12.4) 6.6 (4.0–8.7) 8.9 (5.1–14.7) 8.3 (6.5–13.1) 7.7 (6.3–13.1) 7.4 (4.6–10.7) 8.6 (5.9–10.7) 0.636
Glucose (mg/dl) 103 ± 19 105 ± 15 95 ± 10 96 ± 13 103 ± 13 104 ± 15 97 ± 10 94 ± 8 0.063
QUICKI 0.34 ± 0.03 0.34 ± 0.03 0.36 ± 0.04 0.35 ± 0.04 0.34 ± 0.04 0.34 ± 0.03 0.35 ± 0.04 0.35 ± 0.03 0.793
HbA1c (%) 5.95 ± 0.49 5.95 ± 0.55 5.79 ± 0.35 5.87 ± 0.40 6.12 ± 0.72 6.16 ± 0.73 5.96 ± 0.30 6.01 ± 0.43 0.649

Data are expressed as means ± SD or median.
There were no significant differences among each baseline value.
⁎P b 0.05, +P b 0.01, ‡P b 0.001 for comparison with each baseline value.
†P b 0.05 for comparison with the value after therapy with placebo.
Global ANOVA indicates group differences.
HbA1c = glycated hemoglobin, ADP = adiponectin.
Quantitative Insulin-Sensitivity Check Index (QUICKI) = 1 / [log (insulin) + log (glucose)] [25].
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We investigated whether changes in percent flow-mediated dilator
response to hyperemia, plasma levels of adiponectin, insulin, insulin re-
sistance, or HbA1c were related to changes in lipoprotein levels. There
were no significant correlations between changes in these parameters
and changes in lipoprotein levels following any of the therapies. Further,
there were no significant correlations between percent changes in
adiponectin levels and percent changes in insulin or percent changes
in QUICKI following any of the therapies.

3.4. Effects of therapies in patients with metabolic syndrome/type 2
Diabetes mellitus

We analyzed patients with metabolic syndrome/type 2 diabetes
mellitus, as reported in Table 3. Overall, compared with the effects of
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Fig. 2. Omega-3 fatty acid treatment (O1, O2, or O4), dose-dependently and significantly
reduced triglyceride levels and improved flow-mediated dilation (FMD) after 2 months
of therapy when compared with baseline (P b 0.001 by paired t-test) or when compared
with placebo treatment (P = 0.021 and P b 0.001 by ANOVA, respectively). Standard
error of the mean is identified by the bars.
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each therapy in 44 hypertriglyceridemic patients, we observed similar
results in patients with metabolic syndrome/type 2 diabetes mellitus.
Omega-3 fatty acid treatment dose-dependently and significantly
reduced TG and TG/HDL cholesterol ratio and improved FMD after
2 months of therapy when compared with baseline or when compared
with placebo treatment. However, omega-3 fatty acid treatment did not
significantly change high sensitivity CRP, fibrinogen, plasma adiponectin
levels, insulin sensitivity (determined by QUICKI), or HbA1c levels relative
to baseline measurements. Of note, the effects of omega-3 fatty acid
treatment on these were not significant when compared with placebo
treatment.

4. Discussion

Weobserved that omega-3 fatty acid therapy dose-dependently and
significantly decreased triglycerides and triglycerides/HDL cholesterol
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Fig. 3. The effects of omega-3 fatty acid treatment on fasting insulin and glucose levels
were not significant when compared with placebo treatment. Median values are used in
% change in insulin. Standard error of the mean is identified by the bars.
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sensitivity (determined by QUICKI), or HbA1c levels were not significant when compared
with placebo treatment. Median values are used in % change in adiponectin. Standard
error of the mean is identified by the bars.
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and improved flow-mediated dilation, compared with placebo. None-
theless, when compared with placebo, omega-3 fatty acid therapy did
not significantly change other lipoproteins such as non-HDL cholesterol
and HDL cholesterol, high-sensitivity C-reactive protein, fibrinogen,
insulin, glucose, adiponectin, glycated hemoglobin levels and insulin
sensitivity in patients with hypertriglyceridemia, regardless of dosages.
We observed similar results in a subgroup of patients with themetabol-
ic syndrome/type 2 diabetes mellitus.

Several studies reported that omega-3 fatty acids improve flow-
mediated arterial dilation [26–28]. This effect of omega-3 fatty acids
on endothelial functionmight be supported by experimental evidences.
In the rat fed menhaden oil-rich diets, aortic NO production was
increased [29]. EPA also enhanced NO production in cultured human
endothelial cells [30] and induced Ca2+-independent activation
and translocation of endothelial NO synthase to the cytosol and
endothelium-dependent vasorelaxation [31]. In addition, DHA de-
creased cytokine-induced expression of endothelial leukocyte adhesion
molecules and secretion of IL-6 and IL-8 in cultured endothelial cell [32].
However, it remains unclear whether its favorable vasomotor function
or anti-inflammatory effects translate to improve insulin sensitivity in
patients. For example, our group has demonstrated that statins do not
improve but worsen insulin sensitivity in patients despite of improving
flow-mediated arterial dilation significantly [19,21,23]. Therefore, a
novel point of our current study is to investigate vascular andmetabolic
phenotype of different dosages of omega-3 fatty acids in patients.

Non-HDL cholesterol is an important one of residual risk factors [33]
and has predictive value of cardiovascular events [34,35]. Acute phase re-
actants such as C-reactive protein have also predictive value of cardiovas-
cular events. However, in the current study, omega-3 fatty acid therapy
did not significantly decrease non-HDL cholesterol and HDL cholesterol,
high-sensitivity C-reactive protein, fibrinogen, compared with placebo.

When we observed that omega-3 fatty acid 2 g therapy did not sig-
nificantly improve insulin sensitivity in patients despite reduction of
triglycerides and improvement of flow-mediated dilation [17], some
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argued high dose may improve [13,14,36]. Therefore, we investigated
the effects of low-to-high dose omega-3 fatty acids with a power
calculation.

Adiponectin is an adipose-derived factor that augments and mimics
bothmetabolic and vascular actions of insulin [11]. Adiponectin directly
stimulates nitric oxide production from endothelium via activation of
AMP-activated protein kinase and nitric oxide synthase [37]. Therefore,
increasing adiponectin levels is predicted to improve both insulin sensi-
tivity and endothelial function bymultiplemechanisms [11]. Regulation
of metabolic homeostasis and hemodynamic homeostasis may be
coupled by vascular actions of insulin to stimulate production of nitric
oxide. Thus, improvements in endothelial functionmay increase insulin
sensitivity while increased insulin sensitivity may improve endothelial
function [8,9,38].

QUICKI is a reliable surrogate index for insulin sensitivity that has an
especially excellent correlation with the reference standard glucose
clamp method in insulin resistant subjects with type II diabetes or obe-
sity [25]. In addition, test characteristics of QUICKI including coefficient
of variation and discriminant ratio are significantly better than other
simple surrogate indexes and comparable to those of the glucose
clamp [39]. A large meta-analysis of insulin resistant subjects demon-
strates that QUICKI is among the best surrogate indexes in terms of pre-
dictive power for the onset of diabetes [40]. Becausemeasures of insulin
resistance were considered secondary in the current study, we used
QUICKI to assess insulin sensitivity instead of the reference standard
euglycemic glucose clamp technique. Thus, QUICKI is the most exten-
sively validated and accurate surrogate index of insulin sensitivity cur-
rently available in humans.

The results of experimental and clinical studies with fish oil and
omega-3 fatty acids are controversial. Dietary fish oil increased serum
total adiponectin levels in a dietary model of insulin resistance induced
by long-term sucrose-rich diet in rats [41]. Experimental studies have
demonstrated that dietary fish oils and omega-3 fatty acids increase
total adiponectin levels [41–44]. Indeed, one study demonstrated that
the G protein-coupled receptor GPR120 is a receptor for omega-3 fatty
acids on primary intraperitoneal macrophages and monocytic RAW
264.7 cells and further, activation of GPR120 by omega-3 fatty acids
inhibited multiple inflammation cascades in macrophages and reverses
insulin resistance in obese mice although this study did not measure
adiponectin and acute phase reactant. Since chronic macrophage-
mediated tissue inflammation is a keymechanism for insulin resistance
in obesity, they fed obese wild type and GPR120 knockout mice a high-
fat diet with or without omega-3 fatty acid supplementation. The
omega-3 fatty acid treatment inhibited inflammation by observing
expression of tumor necrosis factor-α, interleukin-6, and monocyte
chemoattractant protein-1 and enhanced systemic insulin sensitivity
in WT mice by increasing glucose transport and translocation of
GLUT4 and enhancing glucose uptake, but was without effect in
GPR120 knockout mice [45].

However, other studies are different. EPA significantly decreased
adiponectin gene expression and protein secretion in primary cultured
rat adipocytes [46]. Omega-3 fatty acids did not significantly increase
plasma or high-molecular weight adiponectin levels in overweight-to-
moderately obese healthy people [47]. DHA supplementation did not
change fasting or postprandial insulin and glucose concentrations and
insulin sensitivity, determined by insulin and homeostasis model as-
sessment of insulin resistance (HOMA-IR) in hypertriglyceridemic
men [48]. In a meta-analysis of 18 randomized clinical trials, omega-3
fatty acids had no effects on insulin resistance compared to placebo
[49]. Instead, some observational studies reported that omega-3 fatty
acid or fish consumption was associated with modestly higher inci-
dence of type 2 diabetes [15,16]. In two meta-analyses, fish oil con-
sumption had no overall effects on fasting glucose or HbA1c in patients
with type 2 diabetes [50,51]. Overall, it seems that omega-3 fatty acids
have no overall effects or increase insulin resistance or diabetes risk,
but further investigation is needed.
endently and significantly decreased triglycerides and improved flow-
16/j.ijcard.2014.07.075
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Metabolic syndrome is associated with atherosclerotic and cardio-
vascular disease. Patients with metabolic syndrome comprise one of
the largest groups of individuals with dyslipidemia and insulin resis-
tance. In the present study, we observed similar results in a subgroup
of patients with the metabolic syndrome/type 2 diabetes mellitus.

In addition to epidemiologic studies, recent clinical studies demon-
strate that omega-3 fatty acids decreased admission to hospital for car-
diovascular reasons and mortality in patients with heart failure [52] or
EPA decreased major coronary events, especially non-fatal coronary
events, but not sudden cardiac death and coronary death in hypercho-
lesterolemic patients [53]. By contrast, recently published OMEGA and
Alpha Omega trial report that low doses of omega-3 fatty acids failed
to reduce the rate of major cardiovascular events [54,55].

In summary, omega-3 fatty acid therapy dose-dependently and sig-
nificantly decreased triglycerides and improved flow-mediated dilation.
Nonetheless, omega-3 fatty acid therapy did not significantly improve
acute-phase reactants and insulin sensitivity in patients with hypertri-
glyceridemia, regardless of dosages.
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